
Final Review - Practical

ICT285 Databases

Set Theory and
Relational Algebra

Review

ÒTraditional ÓSet Operators

- Union

- Intersection

- Difference (or Minus)

!"#$%&'

!"#$%&(

A UNION B

A INTERSECT B

A MINUS B

)*+$#,#-.+"&!%,&/0%*+,-*1

Union Compatibility

- Unlike the relational algebra operators
that compare on the join condition, the
traditional set operators compare on the
whole relation

- To do this, we need UNION
COMPATIBILITY
! "#$%&'($)%*&+,&#--*.)(-%/
! 0#12&1+**%/3+'4.'5&3#.*&+,&#--*.)(-%/&./&1+$3#-.)6%&

78+/.-.+'#6&1+**%/3+'4%'1%9

- Often have to PROJECT the correct attributes
first

!"#$%&2

Union

Union R U S
- Produces a relation that includes all the

tuples in R or S or both
- Duplicates are eliminated
- By convention, the attributes in the result

have the same names as those in the first
relation

!"#$%&3

Union Example

Proj_X LastName U Proj_Y LName ! LastName

Smith Jones Smith

Jones Lee Jones

Tan Tan

Lee

45#1,&,6%&%70"-8%%1&96-&9-*:&-.&;*-<%=,&>&-*&;*-<%=,&?&@-*&A-,6B

Difference (or Minus)

Difference R Ð S

-Produces a relation that includes
all the tuples that are in R but not
in S

!"#$%&C

Difference Example

eg. 'List the employees who work on Project X
but not Project Y'

Proj_X LastName - Proj_Y LName ! LastName

Smith Jones Smith

Jones Lee Tan

Tan

Question: Is X Ð Y equivalent to Y Ð X ?

Intersection

Intersection R Ç S

- Produces a relation that includes all the tuples
in both R and S

!"#$%&DE

Intersection Example

eg. 'List the employees who work on both
Project X and Project Y'

Proj_X LastName Ç Proj_Y LName ! LastName

Smith Jones Jones

Jones Lee

Tan

CUSTOMER (CustomerNumber , CustomerName, DateOfBirth)

EMPLOYEE (EmployeeNumber , EmployeeName, DateOfBirth)

The following relational algebra query is incorrect:

p CustomerName, DateOfBirth (CUSTOMER)

UNION

p DateOfBirth, EmployeeName (EMPLOYEE)

Why is the relational algebra statement above
incorrect?

Rewrite the statement to correct the error.
!"#$%&DF

GH+70"%&D

CUSTOMER (CustomerNumber , CustomerName, DateOfBirth)

EMPLOYEE (EmployeeNumber , EmployeeName, DateOfBirth)

The following relational algebra query is incorrect:

p CustomerName , DateOfBirth (CUSTOMER)

UNION

p DateOfBirth , EmployeeName (EMPLOYEE)

Why is the relational algebra statement above
incorrect?

Rewrite the statement to correct the error.
!"#$%&D'

GH+70"%&D

CUSTOMER (CustomerNumber , CustomerName, DateOfBirth)

EMPLOYEE (EmployeeNumber , EmployeeName, DateOfBirth)

The following relational algebra query is incorrect:

p CustomerName , DateOfBirth (CUSTOMER)

UNION

p EmployeeName, DateOfBirth , (EMPLOYEE)

Why is the relational algebra statement above
incorrect?

Rewrite the statement to correct the error.
!"#$%&D(

GH+70"%&D

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

1. Give all details of the Salesperson named ÔBob Õ
2. Give the SPN and Name of salespeople who took trips to

ÔSydney Õ
3. Give the trip ID and destination city of all trips taken by

the salesperson named ÔDodgy Õ
4. Give the names of salespeople who have not travelled to

ÔSydney Õ

!"#$%&D2

GH+70"%&F

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

1. Give all details of the (any) Salesperson named ÔBob Õ

!"#$%&D3

GH+70"%&F

s I+7%&J&KL-A M@!N5G!;GO!/IB& ! !/5P)Q/I

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

1. Give all details of the (any) Salesperson named ÔBob Õ

!"#$%&DR

GH+70"%&F

s I+7%&J&KL-A M@!N5G!;GO!/IB& ! !/5P)Q/I

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

1. Give all details of the (any) Salesperson named ÔBob Õ

!"#$%&DC

GH+70"%&F

s I+7%&J&KL-A M@!N5G!;GO!/IB& ! !/5P)Q/I

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

2. Give the SPN and Name of salespeople who took trips to
ÔSydney Õ

!"#$%&DS

GH+70"%&F

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

2. Give the SPN and Name of salespeople who took trips to
ÔSydney Õ

!"#$%&FE

GH+70"%&F

!N5G!;GO!/I& T!U!;I&J&)U!;I)OQ;&!)D

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

2. Give the SPN and Name of salespeople who took trips to
ÔSydney Õ

!"#$%&FD

GH+70"%&F

!N5G!;GO!/I&T !U!;I&J&)U!;I)OQ;&!)D

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

2. Give the SPN and Name of salespeople who took trips to
ÔSydney Õ

!"#$%&FF

GH+70"%&F

!N5G!;GO!/I&T !U!;I&J&)U!;I)OQ;&!)D

s)-VW#,8&J&K!8$.%8 M@)DB&! !/5P)Q/I

This works Ð but is it efficient?

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

2. Give the SPN and Name of salespeople who took trips to
ÔSydney Õ

!"#$%&F'

GH+70"%&F

!N5G!;GO!/I&T !U!;I&J&)U!;I)OQ;&!)D

s)-VW#,8&J&K!8$.%8 M@)DB&! !/5P)Q/I

s)-VW#,8&J&K!8$.%8 M)OQ;&!)D

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

2. Give the SPN and Name of salespeople who took trips to
ÔSydney Õ

!"#$%&F(

GH+70"%&F

!N5G!;GO!/I&T !U!;I&J&)U!;I)OQ;&!)D

s)-VW#,8&J&K!8$.%8 M@)DB&! !/5P)Q/I

s)-VW#,8&J&K!8$.%8 M)OQ;&!)D

)D&T)DU!;I&J&!U!;I @!N5G!;GO!/IB& ! !/5P)Q/I

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

3. Give the trip ID and destination city of all trips taken by
the salesperson named ÔDodgy Õ

!"#$%&F2

GH+70"%&F

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

3. Give the trip ID and destination city of all trips taken by
the salesperson named ÔDodgy Õ

!"#$%&F3

GH+70"%&F

s I+7%&J&KX-$Y8M@!N5G!;GO!/IB& ! X-$Y8!;

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

3. Give the trip ID and destination city of all trips taken by
the salesperson named ÔDodgy Õ

!"#$%&FR

GH+70"%&F

X-$Y8!;&T XU!;I&J&)U!;I)OQ;&! XF

s I+7%&J&KX-$Y8M@!N5G!;GO!/IB& ! X-$Y8!;

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

3. Give the trip ID and destination city of all trips taken by
the salesperson named ÔDodgy Õ

!"#$%&FC

GH+70"%&F

X-$Y8!;&T XU!;I&J&)U!;I)OQ;&! XF

s I+7%&J&KX-$Y8M@!N5G!;GO!/IB& ! X-$Y8!;

Z&)*#0VQX[&)-VW#,8@XFB&! !/5P)Q/I

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

4. Give the names of salespeople who have not travelled to
ÔSydney Õ

!"#$%&FS

GH+70"%&F

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

4. Give the names of salespeople who have not travelled to
ÔSydney Õ

!"#$%&'E

GH+70"%&F

All People

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

4. Give the names of salespeople who have not travelled to
ÔSydney Õ

!"#$%&'D

GH+70"%&F

All People

People Who Have
Been to Sydney

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

4. Give the names of salespeople who have not travelled to
ÔSydney Õ

!"#$%&'F

GH+70"%&F

All People

People Who Have
Been to Sydney

People Who Have NOT
Been to Sydney

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

4. Give the names of salespeople who have not travelled to
ÔSydney Õ

GH+70"%&F

Z&I+7% @!N5G!;GO!/IB& ! N55V;G/;5G

ALL_PEOPLE

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

4. Give the names of salespeople who have not travelled to
ÔSydney Õ

GH+70"%&F

Z&I+7% @!N5G!;GO!/IB& ! N55V;G/;5G

Z&I+7% @!?XB&! !?XV;G/;5G

ALL_PEOPLE

SYD_PEOPLE

!N5G!;GO!/I&T !U!;I&J&)U!;I @s)/VWQ)?J&K!8$.%8 M@)OQ;BB&&! !?X

Consider the following relations from a database that
keeps track of business trips made by salespeople
(SPN = Salesperson Number)

SALESPERSON(SPN, Name, Start_Year, Dept_No)
TRIP(SPN, To_City, Depart_Date, Return_Date, Trip_ID)
EXPENSE(TripID, Account# , Amount)

4. Give the names of salespeople who have not travelled to
ÔSydney Õ

GH+70"%&F

N55V;G/;5G&&\QIP!&!?XV;G/;5G& ! !/5P)Q/I

Z&I+7% @!N5G!;GO!/IB& ! N55V;G/;5G

Z&I+7% @!?XB&! !?XV;G/;5G

ALL_PEOPLE

SYD_PEOPLE

SOLUTION

!N5G!;GO!/I&T !U!;I&J&)U!;I @s)/VWQ)?J&K!8$.%8 M@)OQ;BB&&! !?X

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

1. List the unit code of the units taken by the student with the ID Ò1234 Ó
2. List the names of the units taken by all students named ÔJohn Smith Õ

in Semester 2, 2014
3. Produce a list of the titles of the textbooks for units offered by the

School of Information Technology
4. List the StudID of any students who are enrolled in ALL units offered

by the Dodgy School of Business

!"#$%&'3

GH+70"%&'

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

1. List the unit code of the units taken by the student with the ID Ò1234 Ó

!"#$%&'R

GH+70"%&'

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

1. List the unit code of the units taken by the student with the ID Ò1234 Ó

!"#$%&'C

GH+70"%&'

s !,]$QXJ&KDF'(M@GI)O/5BB&&! DF'(

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

1. List the unit code of the units taken by the student with the ID Ò1234 Ó

!"#$%&'S

GH+70"%&'

Z&P.#,W-$%&@DF'(B&! !/5P)Q/I

s !,]$QXJ&KDF'(M@GI)O/5BB&&! DF'(

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

1. List the unit code of the units taken by the student with the ID Ò1234 Ó

!"#$%&(E

GH+70"%&'

Z&P.#,W-$%&@DF'(B&! !/5P)Q/I

s !,]$QXJ&KDF'(M@GI)O/5BB&&! DF'(

Z&P.#,W-$%&@&s !,]$QXJ&KDF'(M@GI)O/5B B&! !/5P)Q/I

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&(D

GH+70"%&'

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&(F

GH+70"%&'

":;<0=: ;=>:

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&('

GH+70"%&'

":;<0=: ;=>:>

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&((

GH+70"%&'

":;<0=: ;=>:> >

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&(2

GH+70"%&'

":;<0=: ;=>:> >

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&(3

GH+70"%&'

":;<0=: ;=>:> >

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&(R

GH+70"%&'

":;<0=: ;=>:>>

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&(C

GH+70"%&'

":;<0=: ;=>:>>

0=?@A

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&(S

GH+70"%&'

":;<0=: ;=>:>>

0=?@A

s I+7%&J&K̂-6.&!7#,6 M@!)PXGI)BB&&!)D All Students named, ÒJohn Smith Ó

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&2E

GH+70"%&'

":;<0=: ;=>:>>

0=?@A

)D&)DU!,]$QX&J&G.*-"U!,]QXT&GIO/5&!)F

s I+7%&J&K̂-6.&!7#,6 M@!)PXGI)BB&&!)D All Students named, ÒJohn Smith Ó

All Enrolments by
Students named, ÒJohn Smith Ó

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&2D

GH+70"%&'

":;<0=: ;=>:>>

0=?@A

)D&)DU!,]$QX&J&G.*-"U!,]QXT&GIO/5&!)F

s I+7%&J&K̂-6.&!7#,6 M@!)PXGI)BB&&!)D

s !%7%1,%*&J&K!%7%1,%*&F[&FED(M@)FB&&!)'

All Students named, ÒJohn Smith Ó

All Enrolments by
Students named, ÒJohn Smith Ó

All Enrolments by
Students named, ÒJohn Smith Ó
For Semester 2 of 2014

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&2F

GH+70"%&'

":;<0=: ;=>:>>

0=?@A

)D&)DU!,]$QX&J&G.*-"U!,]QXT&GIO/5&!)F

s I+7%&J&K̂-6.&!7#,6 M@!)PXGI)BB&&!)D

s !%7%1,%*&J&K!%7%1,%*&F[&FED(M@)FB&&!)'

)'&)'UP.#,W-$%&J&P.#,UP.#,W-$%T&PIQ)&!)(

All Students named, ÒJohn Smith Ó

All Enrolments by
Students named, ÒJohn Smith Ó

All Enrolments by
Students named, ÒJohn Smith Ó
For Semester 2 of 2014

All information for All Units
Enrolled in by
Students named, ÒJohn Smith Ó
For Semester 2 of 2014

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

2. List the names of the units taken by all students named ÔJohn Smith Õ
in Semester 2, 2014

!"#$%&2'

GH+70"%&'

":;<0=: ;=>:>>

0=?@A

)D&)DU!,]$QX&J&G.*-"U!,]QXT&GIO/5&!)F

s I+7%&J&K̂-6.&!7#,6 M@!)PXGI)BB&&!)D

s !%7%1,%*&J&K!%7%1,%*&F[&FED(M@)FB&&!)'

Z&P.#,I+7%&@)(B&! !/5P)Q/I

)'&)'UP.#,W-$%&J&P.#,UP.#,W-$%T&PIQ)&!)(

All Students named, ÒJohn Smith Ó

All Enrolments by
Students named, ÒJohn Smith Ó

All Enrolments by
Students named, ÒJohn Smith Ó
For Semester 2 of 2014

All information for All Units
Enrolled in by
Students named, ÒJohn Smith Ó
For Semester 2 of 2014

All Unit Names for All Units
Enrolled in by
Students named, ÒJohn Smith Ó
For Semester 2 of 2014

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

3. Produce a list of the titles of the textbooks for units offered by the
School of Information Technology

!"#$%&2(

GH+70"%&'

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

3. Produce a list of the titles of the textbooks for units offered by the
School of Information Technology

!"#$%&22

GH+70"%&'

:0B: ;=>:>>

C@@DA>":

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

3. Produce a list of the titles of the textbooks for units offered by the
School of Information Technology

!"#$%&23

GH+70"%&'

s !=6--"&J&KQ)M@PIQ)B&&! Q)PIQ)

:0B: ;=>:>>

C@@DA>":

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

3. Produce a list of the titles of the textbooks for units offered by the
School of Information Technology

!"#$%&2R

GH+70"%&'

Q)PIQ)&Q)PIQ)UP.#,W-$%&J&L//_5Q!)UP.#,W-$%T&L//_5Q!)& ! Q)L//_!

s !=6--"&J&KQ)M@PIQ)B&&! Q)PIQ)

:0B: ;=>:>>

C@@DA>":

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

3. Produce a list of the titles of the textbooks for units offered by the
School of Information Technology

!"#$%&2C

GH+70"%&'

Q)PIQ)&Q)PIQ)UP.#,W-$%&J&L//_5Q!)UP.#,W-$%T&L//_5Q!)& ! Q)L//_!

s !=6--"&J&KQ)M@PIQ)B&&! Q)PIQ)

:0B: ;=>:>>

C@@DA>":

Q)L//_!& Q)L//_!UQ!LI&J&)G>)UQ!LI T&)G>)&!)'

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

3. Produce a list of the titles of the textbooks for units offered by the
School of Information Technology

!"#$%&2S

GH+70"%&'

Q)PIQ)&Q)PIQ)UP.#,W-$%&J&L//_5Q!)UP.#,W-$%T&L//_5Q!)& ! Q)L//_!

s !=6--"&J&KQ)M@PIQ)B&&! Q)PIQ)

:0B: ;=>:>>

C@@DA>":

Q)L//_!& Q)L//_!UQ!LI&J&)G>)UQ!LI T&)G>)&!)'

Z&)#,"%&@)'B&! !/5P)Q/I

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

4. List the StudID of any students who are enrolled in ALL units offered
by the Dodgy School of Business

!"#$%&3E

GH+70"%&'

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

4. List the StudID of any students who are enrolled in ALL units offered
by the Dodgy School of Business

!"#$%&3D

GH+70"%&'

s !=6--"&J&KX-$Y8&!=6--"&-`&L]1#.%11M @PIQ)B&&! XL!PIQ)
All information for of All Units in Dodgy School of Business

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

4. List the StudID of any students who are enrolled in ALL units offered
by the Dodgy School of Business

!"#$%&3F

GH+70"%&'

Z&P.#,W-$%@s !=6--"&J&KX-$Y8&!=6--"&-`&L]1#.%11M @PIQ)BB&! XL!PIQ)
UnitCode of All Units in Dodgy School of Business

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

4. List the StudID of any students who are enrolled in ALL units offered
by the Dodgy School of Business

!"#$%&3'

GH+70"%&'

Z&P.#,W-$%@s !=6--"&J&KX-$Y8&!=6--"&-`&L]1#.%11M @PIQ)BB&! XL!PIQ)

Z&!,]QX[P.#,W-$% @GIO/5B&!)D

UnitCode of All Units in Dodgy School of Business

StuID and UnitCode of All Units Anyone has Enrolled in

Consider the following relations for a database that keeps
track of student enrolment in units and the books adopted for
each unit:

STUDENT (StudID , Name, Major, DoB)
UNIT (UnitCode , UnitName, School)
ENROL (StudID , UnitCode , Semester , Grade)
BOOKLIST (UnitCode , Semester , ISBN)
TEXT (ISBN , Title, Publisher, MainAuthor)

4. List the StudID of any students who are enrolled in ALL units offered
by the Dodgy School of Business

!"#$%&3(

GH+70"%&'

Z&P.#,W-$%@s !=6--"&J&KX-$Y8&!=6--"&-`&L]1#.%11M @PIQ)BB&! XL!PIQ)

Z&!,]QX[P.#,W-$% @GIO/5B&!)D

)D&a&XL!PIQ)&! !/5P)Q/I

UnitCode of All Units in Dodgy School of Business

StuID and UnitCode of All Units Anyone has Enrolled in

StuID and UnitCode of All Units in Dodgy School of Business
that Anyone has Enrolled in

3. SQL

SQL

- Much of this part of the lecture is provided here for
background and future reference

- You will learn a lot about SQL in the labs

- This part of the lecture covers the following:
EF>'-*+4(1-.+'&G&C#1H5*+('4
IF "0A0J:
KF:L80&E&"()M(%*.%/
NFO@>=
PF:L80&I&"()M(%*.%/
QFR55*%5#-%&M(%*.%/
SF"%-&@3%*#-+*/
TF<#-#&<%,.'.-.+'
UF<#-#&V#'.3(6#-.+'

SQL Usage

- SQL can be used for:
! <#-#&<%,.'.-.+'&7<<A9

! J?0R:0&:RCA0W&RA:0?&:RCA0W&<?@8&:RCA0
! J?0R:0&X>0YW&<?@8&X>0Y
! J?0R:0&>=<0BFFF

! <#-#&V#'.3(6#-.+'&7<VA9
! >="0?:W&<0A0:0W&;8<R:0&
! "0A0J:FFF

! <#-#&J+'-*+6&7<JA9
! Z?R=:W&?0X@D0

! :*#'/#1-.+'&J+'-*+6&7:JA9
! J@VV>:W&?@AACRJD

Basic SQL SELECT

Select queries retrieve data from one or more tables

Simplified syntax:

SELECT<list of column expressions>
FROM<list of tables and join operations>
WHERE<list of logical expressions for rows >
GROUPBY <list of grouping columns>
HAVING<list of logical expressions for groups >
ORDERBY <list of sorting specifications>

3C

Comparison Operators

Standard Comparison Operators:
= equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> or != not equal

The WHERE clause can also contain:
- Arithmetic operators (+, - , *, /, **)
- Logical operators (AND, NOT, OR)
- Range search (BETWEEN/AND)
- LIKE Ð used for inexact matching
- ANY and ALL (used with subqueries)

Logical Operators

Can be used to make WHERE criteria more
stringent

ÒList the names of students with a GPA >=
3.0 and who are in the Games Tech major Ó

SELECT StdFirstName, StdLastName, StdGPA,
StdMajor
FROM Student
WHERE StdGPA >= 3.0
AND StdMajor = AúGames Tech';

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

Other logical operators

Is null, is not null
- Checks for existence of an attribute

value
ÒList the name of any student that does not have

a GPAÓ

SELECT StdFirstName, StdLastName
FROM Student
WHERE StdGPA IS NULL;

- THIS IS NOT THE SAME AS StdGPA = 0

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

In, not in

Used with a set of values, or a subquery (later)
ÒList the names of students who are from
Koondoola, Girrawheen, or Balga Ó

SELECT StdFirstName, StdLastName, StdCity
FROM Student
WHERE StdCity IN (ÔKoondoola Õ, ÕGirrawheen Õ,ÕBalga Õ);

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

Pattern Matching

- Matching against a pattern

! ;/%&A>D0&.'&-2%&Y^0?0&16#(/%
! ;/%/&$%-#&12#*#1-%*/&-+&/3%1.,\&-2%&3#--%*'

! Y.641#*4
!) .'&@*#16%W&* .'&V"""_A

! ".'56%&J2#*#1-%*
! + .'&@*#16%W&, >'&V""_A

Examples

ÒList the unit code and title of units
with Finance in their description Ó

SELECT UnitCode, UnitTitle
FROM Unit
WHERE UnitTitle LIKE "*Finance*";

NOTE: The WHERE clause for the same
query in Oracle would be:

SELECT UnitCode, UnitTitle
FROM Unit
WHERE UnitTitle LIKE Ô%Finance% Õ;

;=>:
-&."/($% ;'.-:.-6%

Range Searching

ÒList the names and GPA of students with
a GPA between 3 and 4 Ó

SELECT StdFirstName, StdLastName, StdGPA
FROM Student
WHERE StdGPA BETWEEN 3 AND 4;

Note that BETWEEN/AND uses >= and <=

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

Subqueries

- A query that appears in the WHERE or HAVING
clause of another query

- Can be used with comparison operators, in/not in,
exists/not exists, any/all

- Type 1 subquery
! :2%&M(%*\&%`%1(-%/&+'1%&#'4&3*+4(1%/&#&*%/(6-
! :2%&.''%*&M(%*\&4+%/&'+-&*%,%*%'1%&-2%&+(-%*&M(%*\

- Type 2 subquery
! :2%&.''%*&M(%*\&*%,%*%'1%/&#&-#)6%&.'&-2%&+(-%*&M(%*\
! :2%&.''%*&M(%*\&./&%a#6(#-%4&,+*&%a%*\&*+b&+,&-2%&+(-%*&M(%*\

Type 1 Subquery Example

ÒList the students who are currently studying
ICT218 Ó

SELECT StudentNo, FirstName, LastName
FROM Student
WHERE StudentNo IN

(SELECT StudentNo
FROM Enrolment
WHERE UnitCode = ÔICT218 Õ
and YearSemester = ÔS2 2014 Õ);

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

0=?@AV0=:
!"#$%&"'(-&."/($% 0%12!%3%4"%2V#*H

Joins using the JOIN operator

SELECT<list of column expressions>
FROMTable1 INNER JOIN Table2
ON Table1.PrimaryKey = Table2. ForeignKey
WHERE<list of logical expressions for rows >

J#'&1*%#-%&$(6-.36%&]+.'/&)\&'%/-.'5&-2%&O@>=&@3%*#-+*W&)(-&
-2%&]+.'&1#'&+'6\&%a%*&)%&)%-b%%'&-b+&-#)6%/c
%F5FW&7:#)6%E&O+.'&:#)6%I9&O+.'&:#)6%K

RC

JOIN

- List the Names of students enrolled in ICT218 in
Semester 2, 2014

"0A0J:&"-4[.*/-=#$%W&"-4A#/-=#$%
[?@V&"-(4%'-&5''6789:5'8 0'*+6$%'-
:' "-(4%'-F"-(4%'-=+&d&0'*+6$%'-F"-(4%'-=+

Y^0?0&;'.-J+4%&d&e>J:IETf
R=<&L%#*"%$%/-%*&d&e"I&IgENhi

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

0=?@AV0=:
!"#$%&"'(-&."/($% 0%12!%3%4"%2V#*H

JOIN 2+ TABLES

- List the Names of students enrolled in Databases in
Semester 2, 2014

"0A0J:&"-4[.*/-=#$%W&"-4A#/-=#$%
[?@V&7"-(4%'-&5''6789:5'8 0'*+6$%'-
:' "-(4%'-F"-(4%'-=+&d&0'*+6$%'-F"-(4%'-=+9

5''6789:5'8 ;'.-&
:' 0'*+6$%'-F;'.-J+4%&d&;'.-F;'.-J+4%

Y^0?0&;'.-:.-6%&d&e<#-#)#/%/f
R=<&L%#*"%$%/-%*&d&e"I&IgENhi

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

;=>:
-&."/($% ;'.-:.-6%

0=?@AV0=:
!"#$%&"'(-&."/($% 0%12!%3%4"%2V#*H

JOINS based on PK/FK Equality

SELECT<list of column expressions>
FROMTable1, Table2

WHERETable1.PrimaryKey=Table2.ForeignKey

Can create multiple joins by listing extra tables, however, each
join MUST include its Òjoin condition Ó

FROM Table1, Table2, Table3
WHERE Table1.PrimaryKey=Table2.ForeignKey
AND Table2.PrimaryKey=Table3.ForeignKey

If the Òjoin condition Óis not specified, what do you think will
happen?

CD

JOIN USING PK/FK

- List the Names of students enrolled in ICT218 in
Semester 2, 2014

"0A0J:&"-4[.*/-=#$%W&"-4A#/-=#$%
[?@V&"-(4%'-W&0'*+6$%'-
;<6768!"#$%&"=!"#$%&"'(8>86&2(?3%&"=!"#$%&"'(
R=<&;'.-J+4%&d&e>J:IETf
R=<&L%#*"%$%/-%*&d&e"I&IgENhi

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

0=?@AV0=:
!"#$%&"'(-&."/($% 0%12!%3%4"%2V#*H

JOIN 2+ TABLES USING PK/FK

- List the Names of students enrolled in Databases
in Semester 2, 2014

"0A0J:&"-4[.*/-=#$%W&"-4A#/-=#$%
[?@V&"-(4%'-W&0'*+6$%'-W&;'.-
;<6768!"#$%&"=!"#$%&"'(8>86&2(?3%&"=!"#$%&"'(@
A'B86&2(?3%&"=-&."/($%8>8-&."=-&."/($%
R=<&;'.-:.-6%&d&e<#-#)#/%/f
R=<&L%#*"%$%/-%*&d&e"I&IgENhi

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

;=>:
-&."/($% ;'.-:.-6%

0=?@AV0=:
!"#$%&"'(-&."/($% 0%12!%3%4"%2V#*H

Subqueries and Joins

- You will have noted (I Õm sure) that
sub -queries can be used to express a
join
- Sub -queries can be used to express JOINS as long

as the columns in the SELECT statement are
from a SINGLE table

- The following CANNOT be expressed as a Type 1
subquery:

SELECT S.StdLastName, E.Mark
FROM Student S, Enrolment E
WHERE S.StudentNo = E.StudentNo;

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

0=?@AV0=:
!"#$%&"'(-&."/($% 0%12!%3%4"%2V#*H

!G5GW)&!,+``I-[&5+1,I+7%[&!=6--"I+7%
bO/\&!,+``
cdGOG&I/)&G>Q!)!
@&!G5GW)&T&bO/\&!,]$%.,

cdGOG&!,]$%.,U!,]$%.,I-J&!,+``U!,+``I-Be

EXISTS and NOT EXISTS example
ÒO%,*#%f%&,6%&!,+``I]7A%*[&,6%&.+7%[&1=6--"&[&+.$&1+"+*8&-`&1,+``&7%7A%*1&
96-&+*%&I/)&1,]$%.,1Ug[NB: this assumes that if a member of staff is also
a student, then their student number and staff number will be identical]

SQL - Type 2 Subqueries

StaffNo Name Position
098-76-5432 VINCE ASST
543-21-0987 EMMANUEL PROF
876-54-3210 COLAN ASST

Staff

StudentNo StdLastName StdMajor
123-45-6789 WELLS IS
124-56-7890 NORBERT FIN
876-54-3210 COLAN IS

Student

SQL - Type 2 Subqueries

StaffNo Name Position
098 -76 -5432 VINCE ASST

Result

StaffNo Name Position
098-76-5432 VINCE ASST
543-21-0987 EMMANUEL PROF
876-54-3210 COLAN ASST

Staff

StudentNo StdLastName StdMajor
123-45-6789 WELLS IS
124-56-7890 NORBERT FIN
876-54-3210 COLAN IS

Student

SQL - Type 2 Subqueries

FacSSN FacLastName FacRank
098-76-5432 VINCE ASST
543 -21 -0987 EMMANUEL PROF

Result

StaffNo Name Position
098-76-5432 VINCE ASST
543-21-0987 EMMANUEL PROF
876-54-3210 COLAN ASST

Staff

StudentNo StdLastName StdMajor
123-45-6789 WELLS IS
124-56-7890 NORBERT FIN
876-54-3210 COLAN IS

Student

SQL - Type 2 Subqueries

StaffNo Name Position
098-76-5432 VINCE ASST
543-21-0987 EMMANUEL PROF
876-54-3210 COLAN ASST

Staff

StudentNo StdLastName StdMajor
123-45-6789 WELLS IS
124-56-7890 NORBERT FIN
876-54-3210 COLAN IS

Student

FacSSN FacLastName FacRank
098-76-5432 VINCE ASST
543 -21 -0987 EMMANUEL PROF

Aggregate Functions

- SQL has several built - in functions that
operate on a single column of a table
and return a single value:
- COUNT, MIN, MAX, SUM, AVG

COUNT

- Using COUNT(*) returns the number of rows
retrieved by the query

SELECT COUNT(*)
FROM Student;

- Using COUNT(ColumnName) will return the
number of non -null values in the column

- The result column can be renamed using AS
SELECT Avg(StdGPA) AS AverageGPA ,
FROM Student;

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

Aggregate Functions - WHERE

Aggregate functions can Õt be used in the
WHERE clause directly:

SELECT StdFirstName, StdLastName
FROM Student
WHERE StdGPA > AVG(StdGPA);

does not work as a solution to: ÒGive
the names of students who have a
higher GPA than the average Ó

Instead, you need to use a subquery
":;<0=:

!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

SELECT StdFirstName, StdLastName
FROM Student
WHERE StdGPA >

(SELECT AVG(StdGPA)
FROM Student);

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

GROUP BY

GROUP BY Ôseparates Õthe rows of
a table into groups that have
the same value for a specified
attribute

E.g. Students can be separated into
groups depending on their Major:

CS, BIS, GT

We can then perform aggregate
functions on the groupÉ

GROUP BY

ÒList the minimum, maximum and average GPA for
each of the majors Ó

SELECT StdMajor, MIN(StdGPA) AS MinimumGPA,
MAX(StdGPA) AS MaximumGPA, AVG(StdGPA) AS
AverageGPA

FROM Student
GROUP BY StdMajor;

In this case, Major is the grouping attribute, so the
SELECT applies to each GROUP in the table rather
than each ROW.

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

GROUP BY É

Since the SELECT applies to a
group, each expression in the
select clause must have a single
value per group , i.e.,

Either an aggregate function
Or a grouping attribute

So, any column named in the
SELECT clause has to appear in
the GROUP BY (unless it has an
aggregate function applied to it)

GROUP BY Ð using HAVING

h HAVING is used to select GROUPS in the
same way that WHERE is used to select
ROWS

h E.g. ÒList the majors and the average GPA of
majors where the GPA is greater than 3.3 Ó

SELECT StdMajor, AVG(StdGPA)
FROM Student

GROUP BY StdMajor
HAVING AVG(StdGPA) > 3.3;

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

Set Operators

UNION, INTERSECTION, MINUS

h As with relational algebra, the two
queries MUST be UNION COMPATIBLE

h In this context, this means that both
SELECT statements must return
EQUIVALENT columns

h Duplicates are eliminated from the result
h The operators can only be used between

complete SELECT statements, not
between subqueries within a select

UNION
ÒGive the student number and

names of students who have a
mark of > 60 for Systems
Analysis OR who have a mark of
> 75 for Databases Ó

We need to construct two queries:
h The first being the students with a

mark of > 60 for Systems Analysis
h The second being the students with

a mark of > 75 for Databases

The result is the UNION of the first
and second queries

The resultÉ

SELECT S.StudentNo, StdFirstName, StdLastName
FROM Student S, ClassList C, Unit U
WHERE S.StudentNo = C.StudentNo
AND U.UnitCode = C.UnitCode
AND U.UnitTitle = ÒSystems Analysis Ó
AND C.Mark > 60
UNION
SELECT S.StudentNo, StdFirstName, StdLastName
FROM Student S, ClassList C, Unit U
WHERE S.StudentNo = C.StudentNo
AND U.UnitCode = C.UnitCode
AND U.UnitTitle = ÒDatabases Ó
AND C.Mark > 75

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

;=>:
-&."/($% ;'.-:.-6%

JAR""A>":
!"#$%&"'(-&."/($% V#*H

INTERSECT

h Retrieves rows that are in A
AND B

h E.g. ÒRetrieve students who
have achieved a grade higher
than 65 in BOTH Systems
Analysis AND Databases Ó

h Directly implemented in SQL92
(and Oracle) BUT not in Access

INTERSECT

SELECT S.StudentNo, StdFirstName, StdLastName
FROM Student S, ClassList C, Unit U
WHERE S.StudentNo = C.StudentNo
AND U.UnitCode = C.UnitCode
AND U.UnitTitle = ÒSystems Analysis Ó
AND C.Mark > 65
INTERSECT
SELECT S.StudentNo, StdFirstName, StdLastName
FROM Student S, ClassList C, Unit U
WHERE S.StudentNo = C.StudentNo
AND U.UnitCode = C.UnitCode
AND U.UnitTitle = ÒDatabases Ó
AND C.Mark > 65;

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

;=>:
-&."/($% ;'.-:.-6%

JAR""A>":
!"#$%&"'(-&."/($% V#*H

MINUS (Difference)
Retrieves the rows in A but not B
ÒList the students who have been enrolled in ICT231 but not

ICT218 Ó
SELECT StudentNo

FROM ClassList
WHERE UnitCode = ICT231

MINUS
SELECT StudentNo

FROM ClassList
WHERE UnitCode = ICT218;

JAR""A>":
!"#$%&"'(-&."/($% V#*H

DIVISION

- The relational algebra division operator
is not directly implemented in SQL

- It can be implemented in several ways in
SQL
- Using nested NOT EXISTS
- Using COUNT

- There are several examples in:
- The useful web site reference for this topic
- The additional readings (WATSON)

Division: Nested NOT EXISTS

Example using nested NOT EXISTS
ÒFind the students that have had

enrolments in all ICT units Ó

Using nested not exists, this becomes:
ÒFind the students such that there does

not exist an ICT unit in which they are
not enrolled Ó

Example:

SELECT StudentNo
FROM Student
WHERE NOT EXISTS

(SELECT *
FROM Offering
WHERE UnitCode LIKE "ICT*"
AND NOT EXISTS

(SELECT *
FROM ClassList
WHERE ClassList.StudentNo = Student.StudentNo
AND ClassList.UnitCode = Offering.UnitCode));

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

JAR""A>":
!"#$%&"'(-&."/($% V#*H

@[[0?>=Z
-&."/($% !%3%4"%2 0%12

ÒFind the students that
have enrolments in all
ICT units Ó

Division Template

h Watson (2002) has a division template you may
find useful:

TARGET

*target#

target1

target2

É

TARGET Ð
SOURCE

t-s1

t-s2

É

SOURCE

*source#

source1

source2

É

Find the target1 that has appeared in all sources

Division Template SQL

The SQL would be:

SELECT Target1 FROM Target
WHERE NOT EXISTS

(SELECT * FROM Source
WHERE NOT EXISTS

(SELECT * FROM Target -Source
WHERE Target -

Source.Target#=Target.Target#
AND Target -

Source.Source#=Source.Source#))

Division: COUNT

Using COUNT

ÒFind the students that have
enrolments in all IT units Ó

Using COUNT, this becomes;
Find the students for which the number of

distinct ICT units in which they have
been enrolled is equal to the number of
distinct ICT units.

Example

The SQL would be:
SELECT Student.StudentNo
FROM Student, ClassList
WHERE Student.StudentNo = ClassList.StudentNo
AND UnitCode IN

(SELECT UnitCode
FROM Unit
WHERE UnitCode LIKE ÒICT*")

GROUP BY Student.StdSSN
HAVING COUNT (Student.StdSSN) =

(SELECT COUNT(UnitCode)
FROM Unit
WHERE UnitCode LIKE "ICT*");

This part counts
the total IT
offerings

This part counts
the number of IT
units in which each
student is enrolled

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

;=>:
-&."/($% ;'.-:.-6%

JAR""A>":
!"#$%&"'(-&."/($% V#*H

Create Table

CREATE TABLE Customer
(CustNo CHAR(8) CONSTRAINT CustPK PRIMARY KEY ,
CustFirstName VARCHAR2(20) CONSTRAINT FNameNN
NOT NULL,
CustLastName VARCHAR2(30) NOT NULL,
CustStreet VARCHAR2(50),
CustCity VARCHAR2(30),
CustState CHAR(2),
CustZip CHAR(10),
CustBal DECIMAL(12,2) DEFAULT 0);

CREATE TABLE É AS

You can create a table from an existing table(s) using
a query to define which rows and columns to use:

CREATE TABLE CSStudents AS
SELECT *
FROM Student
WHERE StdMajor = ÔCSÕ;

-The new table inherits the data type and size of the
original table's columns, but not any constraints .

-The data in the new table is NOT updated when the
original is

":;<0=:
!"#$%&"'("-4[.*/-=#$% "-4A#/-=#$% "-4J.-\ "-4V#]+* "-4Z8R

ALTER TABLE

Modifies the table structure after it has
been created

- Add/drop columns
- Modify column definitions
- Add/drop constraints

Example

- Remove not null constraint for CustFirstName

ALTER TABLE Customer
DROP CONSTRAINT FNameNN ;

DROP TABLE

DROP TABLE TableName [RESTRICT | CASCADE]

%F5F<?@8&:RCA0&J(/-+$%*i

- Removes named table and all rows within it .

- With RESTRICT, if any other objects depend
for their existence on continued existence of
this table, SQL does not allow request .

- With CASCADE, SQL drops all dependent
objects (and objects dependent on these
objects) .

Constraints

- There are a number of constraints that can be
specified in SQL (without the use of additional
procedures), including:

! ?%M(.*%4
! ;'.M(%
! 0'-.-\&.'-%5*.-\
! ?%,%*%'-.#6&.'-%5*.-\

Uniqueness

Can specify a particular column (or
combination of columns) will only allow
unique values:

CREATE TABLE Customer
(CustNo CHAR(8) CONSTRAINT CustPK PRIMARY KEY ,
CustFirstName VARCHAR2(20) CONSTRAINT FNameNN
NOT NULL,
CustLastName VARCHAR2(30) NOT NULL,
CustEmail VARCHAR2(25) CONSTRAINT
UniqueEmail UNIQUE,
CustStreet VARCHAR2(50),
CustCity VARCHAR2(30),
CustState CHAR(2),
CustZip CHAR(10),
CustBal DECIMAL(12,2) DEFAULT 0);

Entity integrity

The entity integrity constraint says that primary key
values are unique and cannot be null. These are
automatically enforced for a primary key Ð you
don Õt have to define them separately

CREATE TABLE Customer
(CustNo CHAR(8) CONSTRAINT CustPK PRIMARY KEY ,
CustFirstName VARCHAR2(20) CONSTRAINT FNameNN
NOT NULL,
CustLastName VARCHAR2(30) NOT NULL

É.

CREATE TABLE Customer_Artist_Int
(CustNo CHAR(8),
ArtistID CHAR(8),
CONSTRAINT Cust_Artist_PK PRIMARY KEY (CustNo,
ArtistID));

Referential integrity

SQL allows you to specify actions in the constraint definition:
CREATE TABLE Work

(WorkID NUMBER(4),
Title VARCHAR2(35) NOT NULL,
Copy VARCHAR2(12) NOT NULL,
Medium VARCHAR2(35),
Description VARCHAR2(1000),
ArtistID NUMBER(4) NOT NULL,
CONSTRAINT WorkPK PRIMARY KEY(WorkID),
CONSTRAINT WorkAK1 UNIQUE (Title, Copy),
CONSTRAINT ArtistFK FOREIGN KEY (ArtistID)

REFERENCES ARTIST(ArtistID));

- Note that illegal inserts are always disallowed if the foreign key
constraint is defined

Referential Actions

Options for update and delete are:
NO ACTION: prevent deletion if referential integrity would

be violated
SET NULL: set to null
SET DEFAULT: set to a default value defined for that field
CASCADE: cascade the update/delete

- No action is the default if no other action is specified

- If a table is referenced by more than one other table,
the more restrictive action will apply

Referential Actions in Oracle SQL

Oracle allows you to specify only Ôon delete cascade Õin the constraint
definition:
CREATE TABLE Work

(WorkID NUMBER(4),
Title VARCHAR2(35) NOT NULL,
Copy VARCHAR2(12) NOT NULL,
Medium VARCHAR2(35),
Description VARCHAR2(1000),
ArtistID NUMBER(4) NOT NULL,
CONSTRAINT WorkPK PRIMARY KEY(WorkID),
CONSTRAINT WorkAK1 UNIQUE (Title, Copy),
CONSTRAINT ArtistFK FOREIGN KEY (ArtistID)

REFERENCES ARTIST(ArtistID)
ON DELETE CASCADE);

If ON DELETE CASCADE is not specified, the default is to disallow any
deletion that would violate referential integrity

INSERT

INSERT adds a single row (record) to the table

INSERT INTO TableName [(columnList)]
VALUES (dataValueList);

Eg:

INSERT INTO Artist
VALUES (1, ÔMiro Õ,ÕJoanÕ,ÕSpanish Õ,1893,
1983);

UPDATE

UPDATE is used to modify the attribute values in
selected rows.

Rows are selected using WHERE :

UPDATE Artist

SET DateOfDeath = 1984

WHERE ArtistID = 1;

If no where clause specified all
rows are updated:

UPDATE Trans
SET AskingPrice = 1.1*AskingPrice;

DELETE

Rows defined by a WHERE clause are deleted:
DELETE FROM Artist

WHERE LastName = ÔTobey Õ;

- If no WHERE clause is specified all rows are deleted:
DELETE FROM Artist;

-Note that you can Aût delete columns, only rows Ð deleting a
column is altering the structure of a table.

